ХИМИЯ АНАЛИТИЧЕСКАЯ: МЕТОДЫ АНАЛИЗА - meaning and definition. What is ХИМИЯ АНАЛИТИЧЕСКАЯ: МЕТОДЫ АНАЛИЗА
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is ХИМИЯ АНАЛИТИЧЕСКАЯ: МЕТОДЫ АНАЛИЗА - definition

Аналитическая разведка

ХИМИЯ АНАЛИТИЧЕСКАЯ: МЕТОДЫ АНАЛИЗА      
К статье ХИМИЯ АНАЛИТИЧЕСКАЯ
В аналитической химии есть несколько методов, основанных на определении положения химического равновесия. К ним относятся, в частности, классические гравиметрия и титриметрия, а также сравнительно новый иммунологический анализ.
Гравиметрия (весовой метод). В гравиметрии определяемое вещество переводят в химически чистое состояние или превращают в весовую форму - соединение с точно известным постоянным составом, которое можно легко выделить и взвесить. Количество анализируемого вещества рассчитывают исходя из массы весовой формы и уравнения реакции, связывающей это вещество с весовой формой. Химические стандарты не требуются. Весовые методы анализа очень точны, их часто используют в сомнительных случаях в качестве контроля. Точность анализа ограничивается точностью определения массы и полнотой образования и выделения чистого вещества. Гравиметрия - продолжительная процедура, поскольку и перевод определяемого вещества в весовую форму, и выделение ее из смеси требуют времени. Кроме того, необходимо убедиться в том, что весовая форма - это вещество точно известного постоянного состава, не содержащее примесей.
Большинство весовых определений основано на образовании и выделении из раствора (как правило, водного) твердых нерастворимых осадков. Задача состоит в том, чтобы осадить по возможности максимальное количество определяемого вещества (по крайней мере, 99,99%), поэтому осадок (чаще всего соль) должен обладать как можно меньшей растворимостью. Растворимость соли определяется величиной константы равновесия реакции растворения, в которой образуются ионы. Количественное осаждение обычно осуществляют, добавляя к раствору с определяемым веществом стехиометрический избыток осаждающего реагента. Растворимость соли в присутствии избытка одного из ионов, входящих в ее состав, снижается. Для уменьшения влияния других равновесных реакций, приводящих к увеличению растворимости соли, необходимо контролировать состав раствора.
Для разных анализируемых веществ применяют разные осаждающие реагенты. Некоторые из них приведены в табл. 1.
Одно из основных преимуществ весовых определений заключается в том, что не нужно калибровать приборы или готовить стандартные растворы. Результат получают, взвесив осадок и зная состав участвующих в реакции соединений. Пусть, например, мы хотим определить содержание марганца в образце. Для этого нужно перевести марганец в Mn3O4, отделить последний и взвесить. Предположим, что из 1,52 г образца образуется 0,126 г Mn3O4 (т.е. 0,00055 моль, так как 1 моль Mn3O4 содержит 228,8 г). В 1 моль Mn3O4 содержится 3 моль Mn, а в 0,00055 моль - соответственно 0,00165 моль Mn, или 0,0907 г (1 моль Mn содержит 54,94 г). Следовательно, содержание Mn в образце (0,0907/1,52)?100% = 5,97%.
Как мы уже говорили, гравиметрия довольно медленная процедура; образование осадка, его отделение фильтрованием, высушивание - все это требует времени. Кроме того, весовые определения обычно не отличаются высокой селективностью, поэтому дополнительное время уходит на подбор условий (например, pH), переосаждение и т.п. Чем сложнее по составу образец, тем более вероятны ошибки: завышение весового содержания анализируемого вещества, связанное с соосаждением примесей, или занижение, обусловленное потерей вещества на стадии его выделения. Вследствие ограниченных селективности и чувствительности гравиметрию нет смысла применять, когда в наличии имеются лишь микро- или следовые количества определяемого вещества.
Титриметрия (объемный метод). В титриметрии концентрацию определяют, измеряя объем стандартного или титрованного реагента (титранта), израсходованного в химической реакции с определяемым веществом в растворе (или газовой фазе). Измерение проводят с помощью процедуры титрования. Это простой, относительно быстрый, универсальный и точный метод.
При титровании титрант добавляют порциями или непрерывно с небольшой постоянной скоростью и измеряют его объем до тех пор, пока не будет достигнута точка эквивалентности, отвечающая объему титранта, при котором в реакцию вступает все определяемое вещество. Точку эквивалентности находят, непрерывно следя за изменением тех или иных свойств титруемого раствора (цвета, оптической плотности, электрохимических свойств и т.д.) при помощи специальных приборов или визуально.
Чтобы данную химическую реакцию можно было использовать в титровании, участвующие в ней вещества должны находиться в строго определенных количественных (стехиометрических) соотношениях. Реакция должна протекать быстро и практически до конца, а точка эквивалентности точно фиксироваться. Чаще всего используют реакции нейтрализации (кислотно-основные), комплексообразования и окислительно-восстановительные. Реакции нейтрализации распространены наиболее широко; именно их мы и рассмотрим для пояснения ключевых моментов всех реакций титрования.
Кривые титрования. Кривая титрования - это график зависимости pH, оптической плотности или каких-либо других характеристик титруемого раствора (ось ординат) от объема добавленного титранта (ось абсцисс). Масштаб оси абсцисс всегда линейный, а оси ординат может быть линейным или логарифмическим. Линейный масштаб удобен для тех методов контроля за титрованием (спектрофотометрия, амперометрия), в которых контролируемый параметр меняется с концентрацией линейно, а логарифмический - в случае логарифмического изменения (например, при потенциометрии с ионоселективным электродом). Логарифмический масштаб часто используют при визуальном определении конечной точки титрования, поскольку именно в этом масштабе наиболее наглядно проявляется резкое изменение свойств раствора вблизи точки эквивалентности.
Зависимость кривых титрования от концентрации и константы равновесия. Для точного определения конечной точки титрования необходимо, чтобы на кривой титрования вблизи точки эквивалентности наблюдался перегиб (скачок). Это требование устанавливает пределы как для минимальной определяемой концентрации, так и для минимальной константы равновесия, приемлемой для реакции титрования. На рис. 3 представлены кривые титрования сильной кислоты сильным основанием и слабой кислоты сильным основанием. Видно, что при уменьшении концентрации скачок становится менее выраженным. Нижний предел концентрации зависит от конкретной реакции и метода определения конечной точки титрования, но проводить титрование при концентрациях ниже 10-4 М уже затруднительно. Рисунок 4 иллюстрирует влияние константы равновесия реакции титрования на кривую титрования. Для реакций нейтрализации в водных растворах константа равновесия в случае сильной кислоты и сильного основания составляет 1014, а для слабой кислоты и сильного основания - 1014Ka, где Ka - константа диссоциации кислоты. По мере уменьшения константы равновесия уменьшается и величина скачка. Чтобы визуальное определение конечной точки титрования было надежным, константа равновесия не должна быть меньше 106. При инструментальном контроле титрования или расчете положения конечной точки титрования на основании полученных данных константа равновесия может составлять всего 102.
Смеси. Если в образце содержатся два определяемых вещества, взаимодействующие с одним и тем же титрантом, их можно определить в одной операции титрования при условии, что реакция каждого из этих веществ с титрантом имеет достаточно высокую константу равновесия и что эти константы существенно различаются (как правило, не менее чем на два порядка). На рис. 5 приведены кривые титрования для смесей анализируемых веществ с различными pKa. Первым титруется вещество, реакция которого с титрантом имеет бльшую константу равновесия. Объем от начала титрования до первой конечной точки позволяет определить концентрацию этого анализируемого вещества, а объем между конечными точками титрования - концентрацию второго анализируемого вещества. Если константы равновесия слишком близки, то локализовать первую конечную точку титрования будет сложно или вообще невозможно. В таком случае анализируемые вещества нельзя определить по отдельности, а суммарный объем титранта позволит рассчитать лишь сумму их концентраций.
Цветные индикаторы. Цветной индикатор - вещество, которое меняет свою окраску при взаимодействии с одним из компонентов титруемого раствора. Пусть, например, индикатор In взаимодействует с определяемым веществом A:
A + T P (реакция титрования)
A + In AIn (реакция с индикатором)
где A - определяемое вещество, T - титрант, P - продукт реакции, In - индикатор, AIn - продукт взаимодействия определяемого вещества и индикатора. In можно использовать как индикатор в данной реакции титрования, если он и AIn по-разному окрашены. В качестве цветных индикаторов обычно используют вещества, вступающие в реакции того же типа, что и реакция между определяемым веществом и титрантом. Индикаторами кислотно-основного титрования, как правило, являются слабые кислоты, у которых кислая и основная формы имеют разную окраску. В реакциях комплексообразования индикаторами служат вещества, способные образовывать комплексы с определяемым ионом металла и имеющие разную окраску в зависимости от того, находятся ли они в свободном состоянии или входят в состав комплекса.
Очень часто при титровании меняется pH раствора (кислотно-основное титрование) или потенциал (окислительно-восстановительные реакции). Для кислотно-основного титрования используют индикатор, который переходит из одной окрашенной формы в другую при pH, близком к pH точки эквивалентности. На рис. 6 представлена кривая титрования смеси двух слабых кислот и указаны интервалы изменения окраски нескольких индикаторов. Для фиксации первой конечной точки титрования следует взять бромкрезоловый зеленый, второй - тимолфталеин.
Инструментальное определение конечной точки титрования. Непрерывный контроль процесса титрования с помощью приборов позволяет получить данные о его ходе как до, так и после точки эквивалентности. Эти данные можно представить в виде графика и определять конечную точку графически или путем вычислений. Чаще всего используют спектрофотометрическое (измерение оптической плотности), амперометрическое и потенциометрическое (измерение электродного потенциала) титрование.
Кулонометрическое титрование. Кулонометрическое титрование обычно проводят при постоянном токе. Титрант образуется в результате электрохимических процессов на рабочем электроде в сосуде для титрования. Число молей анализируемого вещества равно произведению силы тока на время, необходимое для образования титранта в количестве, достаточном для достижения конечной точки титрования с учетом стехиометрии. Химические стандарты не требуются. К титрантам, которые образуются в ходе электрохимических процессов, относятся H+, OH-, Br2 и I2.
Прямое и обратное титрование. В простейшем варианте титрования анализируемое вещество взаимодействует непосредственно с титрантом. Количество анализируемого вещества рассчитывают исходя из молярной концентрации титранта, его объема, требуемого для достижения точки эквивалентности, и стехиометрии реакции между определяемым веществом и титрантом. Предположим, что для достижения конечной точки титрования 5,00 мл раствора, содержащего ионы Sn2+, потребовалось 12,51 мл 0,100 М раствора Ce(IV). Реакция титрования имеет вид Sn2+ + 2Ce4+ . Sn4+ + 2Ce3+. Количество Ce4+, пошедшего на титрование, составляет (12,51?10-3 л)?(0,100 моль/л) = 12,51?10-4 моль, количество прореагировавшего Sn2+ в 2 раза меньше, т.е. 6,25?10-4 моль. Столько Sn2+ содержится в 5,00 мл раствора, так что его концентрация равна (6,25?10-4 моль)/(5?10-3 л) = 0,125 М.
В обратном титровании анализируемое вещество взаимодействует не с титрантом, а с другим реагентом, присутствующим в избытке. Избыток затем определяют титрованием. Если известно исходное количество реагента и определен его избыток, то разность между ними - это количество реагента, пошедшее на реакцию с определяемым веществом. Предположим, что к 5,00 мл образца, содержащего фенол, добавляют 20,00 мл 0,100 М раствора гидроксида натрия. В результате реакции образуется фенолят натрия. Избыток гидроксида натрия титруют 12,53 мл 0,0800 М раствора HCl. Соотношения между реагентами в реакциях гидроксида натрия и фенола или гидроксида натрия и соляной кислоты составляют 1:1. В таком случае исходное количество гидроксида натрия равно (20,00?10-3 л)?(0,100 моль/л) = 20,00?10-4 моль. Избыток гидроксида натрия равен количеству соляной кислоты, пошедшей на его титрование: (12,53?10-3 л)?(0,0800 моль/л) = 10,00?10-4 моль. На взаимодействие с анализируемым веществом израсходовано (20,00 - 10,00)?10-4 моль = 10,00?10-4 моль гидроксида натрия. Такое же количество фенола содержится в 5,00 мл образца. Следовательно, концентрация фенола составляет (10,00?10-4 моль)/(5,00?10-3 л) = 0,200 М.
Обратное титрование используют, например, когда константа равновесия реакции прямого титрования слишком мала. Так, в рассмотренном выше примере фенол - довольно слабая кислота, и константа равновесия прямого титрования фенола гидроксидом натрия составляет величину лишь порядка 104. В то же время константа равновесия реакции обратного титрования между избытком гидроксида натрия (сильное основание) и соляной кислотой (сильная кислота) равна 1014. Среди других причин применения обратного титрования - отсутствие подходящего метода индикации или недостаточная скорость реакции при прямом титровании. Так, для прямого комплексонометрического титрования иона металла этилендиаминтетрауксусной кислотой (ЭДТА) обычно используют металлы-индикаторы. Понятно, что для определения конечных точек титрования всех ионов металлов нужно множество различных индикаторов. При обратном титровании к раствору, содержащему ион металла, добавляют избыточное количество ЭДТА, а избыток последнего затем определяют при помощи раствора, содержащего Mg2+. Тогда единственный необходимый индикатор - это индикатор на Mg2+, независимо от того, какой ион определяют.
Кислотно-основное титрование. Случаев применения титрования кислот и оснований множество. Чтобы конечная точка титрования определялась наиболее четко, в качестве титрантов применяют сильные кислоты и основания. Типичный кислотный титрант - HCl. Его стандартизуют по первичному стандартному карбонату натрия, используя в качестве индикаторов метиловый красный, метиловый оранжевый или бромкрезоловый зеленый. Типичный основный титрант - NaOH, его стандартизуют по первичному стандартному бифталату калия, используя в качестве индикатора фенолфталеин. Примером кислотно-основного титрования может служить метод определения содержания азота в различных соединениях (метод Кьельдаля): образец разлагают горячей серной кислотой, превращая азот в ион аммония; после охлаждения образец обрабатывают щелочью, чтобы перевести ион аммония в аммиак; аммиак улавливают кислым раствором, после чего избыток кислоты определяют титриметрически при помощи реакции нейтрализации.
Комплексонометрическое титрование. Чаще всего комплексонометрическое титрование применяют для определения ионов металлов с использованием ЭДТА в качестве титранта (например, при определении жесткости воды). Образец воды подщелачивают аммиачным буферным раствором, добавляют индикатор эриохром черный и полученный раствор титруют ЭДТА.
Окислительно-восстановительное титрование. Во многих наиболее распространенных реакциях окислительно-восстановительного титрования косвенным участником является иод. Конечная стадия титрования заключается в количественном определении иода при помощи титрования тиосульфатом натрия. В качестве индикатора на иод используют крахмал. Тиосульфат стандартизуют по трииодид-иону (I3-), который получается по реакции между KI и первичным стандартом KIO3. Таким способом определяют, например, степень ненасыщенности жирных кислот, содержание фенола, многоатомных спиртов (глицерина или этиленгликоля).
Комбинаторная химия         
Комбинато́рная химия — метод поиска биологически активных веществ путём массового синтеза серий аналогичных соединений с различными заместителями и их массового скрининга.
Компонентный анализ         
ПРОЦЕДУРА ВЫДЕЛЕНИЯ СЕМ В ЗНАЧЕНИИ СЛОВ, ПРОВОДИМАЯ ВЫСТРАИВАНИЕМ БИНАРНЫХ ОППОЗИЦИЙ; МЕТОД ИССЛЕДОВАНИЯ ПЛАНА СОДЕРЖАНИЯ ЗНАЧИМЫХ ЕДИНИ
Компонентного анализа метод; Метод компонентного анализа
Компоне́нтный ана́лиз — в языкознании: метод исследования плана содержания значимых единиц языка, целью которого является разложение значения на минимальные семантические составляющие. Основан на гипотезе о том, что значение всякой языковой единицы состоит из семантических компонентов (сем) и словарный состав языка может быть описан с помощью ограниченного (сравнительно небольшого) числа семантических признаковКузнецов А.

Wikipedia

Анализ разведывательной информации

Анализ разведывательной информации — получение необходимой информации посредством анализа данных, имеющихся в свободно доступных источниках или же добытых негласными способами. Его выделяют как составную часть разведки в целом — как элемент разведывательного цикла.

What is ХИМИЯ АНАЛИТИЧЕСКАЯ: МЕТОДЫ АНАЛИЗА - meaning and definition